STUDIES ON ETHYLENE AND CARBON DIOXIDE PRODUCTION BY PEARS DURING STORAGE IN AIR AT LOW TEMPERATURE AND ON SUBSEQUENT TRANSFER TO + 20°C.

BY MARIA A. TORRES
(Departamento de Fisiologia Vegetal,
Estação Agronómica Nacional, Oeiras, Portugal)

& M J. C. RHODES
(ARC Food Research Institute,
Colney Lane, Norwich, NOR 70F, England)

ABSTRACT

Changes in ethylene and CO₂ production were followed during storage and ’after ripening’ of a variety of pears, ‘Rocha’, widely grown in Portugal. The ethylene production reached a maximum after five months storage at +1°C but on transfer to +20°C after an initial increase, the rate of production always decreased. Experiments were done with ‘Rocha’ and ‘Conference’ pears in order to follow changes in ethylene and CO₂ production during the first few hours following transfer to +20°C. The increase in respiration paralleled the increase in temperature very closely but ethylene production rose to a maximum after 6-7 hours at +20°C and subsequently fell. An atmosphere deficient in O₂, depressed the ethylene production during the warming period but respiration was stimulated.

INTRODUCTION

It is now widely accepted that the olefinic gas, ethylene, play an important rôle in the post-harvest physiology of fruits and it may be considered to act as the natural ripening hormone (Burg & Burg, 1965b). The increase in ethylene biosynthesis is an early event in ripening of the climacteric class of fruits of which the pear is a member. The increase in ethylene biosynthesis to a stimulatory concentration is the event which will initiate the transition from growth to senescence and involving an increase in respiration and leading to the ripening of the fruit (Rhodes, 1970). Ethylene will trigger the many biochemical reactions in the fruit which are not necessarily
causally related to each other but occur more or less in parallel and in time relation to the climacteric» (Pratt & Goeschl, 1969).

It has been shown that in fruits stored in air at low temperature the endogenous concentration of ethylene increases with time (Knee, 1971; Torres, 1971). However, it is not clearly established to what extent these changes affect the behaviour of the fruit at storage temperatures (Fidler, 1960). We know that fruits undergo a climacteric rise during low temperature storage (Kidd & West, 1937; Knee, 1971; Leonard & al., 1954; Torres, 1971) and that after prolonged exposure to low temperature they often fail to ripen when transferred to room temperature (Fidler & Coursey, 1970; Wilkinson, 1970).

The production of CO₂ and ethylene by pears of the variety 'Rocha' grow in Portugal was followed during storage in air at +1°C and throughout a subsequent period of 7 days after transfer to +20°C. (the 'after ripening' period). Throughout the storage period studied, the pears after the subsequent warming treatment ripened normally to produce high quality ripe fruit. Detailed studies were also made of the transitory changes in ethylene and CO₂ production which occurred during the first few hours of transfer of fruit from +1°C to +20°C. The implications of these results on our understanding of the physiological state of the fruit and its metabolism during storage are discussed.

MATERIAL

'Rocha' pears picked in Portugal at the end of August of 1970 were transported to England by refrigerated van and stored for several months at +1°C. In addition, 'Conference' pears from a commercial store at —1°C. (Norfolk Fruit Growers Ltd., Wroxham, England) were used for some of the experiments.

METHODS

At intervals, samples of 10 'Rocha' pears stored at +1°C. were transferred to 51 containers and kept at +1°C. A constant flow (of between 2-8 l/h) of air free of CO₂ (removed by passing the air through a soda lime tower) and of ethylene
(removed by passing the air through a solution of mercuric perchlorate — 0.25 M mercuric oxide in 2 N perchloric acid) was passed over the pears in the container. The humidity of the air stream was maintained at 95%. After 48 hours at +1°C, the whole system was removed to a constant temperature room at 20°C for an «after ripening» period of 7 days. During both phases of the experiment, samples of the gas passing over the fruit were analysed for CO₂ and C₂H₄ content using «Pye 104» chromatograms with either a 2 ft silica gel column and a katharometer detector for CO₂, or a 5 ft Porapak S column and flame ionisation detector for ethylene. From this data rates of CO₂ and ethylene production were calculated.

When the internal atmosphere of the pear was to be sampled during a temperature transition, a fine plastic tube was sealed into the core of the pear so that internal atmospheric samples could be withdrawn at intervals with a syringe (Reid, Rhodes & Hulme, 1972). The changes in the fruit temperature during such a transition was followed by introducing thermocouples into the fruit at various positions: near to the core, under the skin or in the pulp.

RESULTS

1. Changes in ‘Rocha’ pears during storage

Fig. 1 shows the changes in respiration and ethylene production of pears stored at +1°C. and subsequently transferred to +20°C. The respiration of the pears at 1°C. stayed approximately constant at about 30 ml CO₂. 10 kg⁻¹. hr⁻¹ throughout the storage period while the ethylene production rose to a maximum by the fifth month in store. Fig. 1 shows that in the «after ripening» period at 20°C. the initial rise in ethylene production increase as the pears matured in store.

Fig. 2 shows that pears kept for 5 months at +1°C. had already reached the respiration climacteric peak since at this stage treatment of the fruit at 20°C. with 100 ppm ethylene in air had no effect on the respiration.
Fig. 1.—Respiration and ethylene production of 'Rocha' pears
stored at +1°C. and later transferred to +20°C.
Respiração e produção de etileno de peras 'Rocha' armazenadas
a +1°C. e depois transferidas para +20°C.

○ Samples at +1°C.
Amostras a +1°C.
● After ripening period at +20°C.
Período de pós-maturação a +20°C.

2. Changes in CO₂ and ethylene production during the transition
from +1°C to +20°C.

When individual pears were warmed from the storage temp-
erature to 20°C, a slow and regular increase in CO₂ production
was observed which closely followed the rise in temperature
(Figs. 3 and 4). The ethylene production did not follow the
rise in temperature but in 'Rocha' pears reached a maximum
after 5-6 hours and started to fall before temperature equili-
bration was achieved (after 9 hours, see Figs. 3, 4 and 5). It is
interesting that the height of the peak of C₂H₄ production over
Fig. 2 — The effect of exogenous C,H₄ on the ripening of ‘Rocha’ pears stored at +1°C for 5 months (26 Jan.).
Efeito de C,H₄ exógeno na maturação de pêras ‘Rocha’ armazenadas a +1°C durante 5 meses (26 Jan.).

+ In air at +1°C.
Em ar a +1°C.

Control in air at +20°C.
Controle em ar a +20°C.

▼ In air plus 100 ppm C,H₄ at +20°C.
Em ar mais 100 ppm C,H₄ a +20°C.

↑ Removed to +20°C.
Transferidas para +20°C.
the six-hour period decreased in the longer stored post-climacteric pears (Fig. 3). The degree of stimulation of ethylene production was somewhat greater with the 'Conference' pears (see Fig. 5) where a ten-fold stimulation of ethylene production

Fig. 3 — CO₂ and C₂H₄ production of individual samples of 'Rocha' pears during the temperature equilibration period.

Produção de CO₂ e C₂H₄ de amostras individuais de péras 'Rocha' durante o período de equilíbrio de temperatura.

○ 'Rocha' pears on 2.3.71 (6 months).
 Pêras 'Rocha' em 2.3.71 (6 meses).

□ 'Rocha' pears on 10.3.71 (6 ½ months).
 Pêras 'Rocha' em 10.3.71 (6 ½ meses).

△ 'Rocha' pears on 24.4.71 (7 ½ months).
 Pêras 'Rocha' em 24.4.71 (7 ½ meses).
occurred over a five-hour period, and suggests a Q_{10} value for ethylene production in excess of 5.

Fig. 4 shows a representative experiment with a single ‘Conference’ pear in which the internal CO_2 and ethylene concentrations, the rates of CO_2 and ethylene production and the flesh temperature were followed for the first 10 hours after the transfer of the pear from +1°C to +20°C. The rate of

Fig. 4 — Internal atmosphere concentrations and external productions of a ‘Conference’ pear during the temperature equilibration period.

Concentrações da atmosfera interna e produções externas de uma pêra ‘Conference’ durante o período de equilíbrio de temperatura.

□ Temperature deep inside the fruit.
* Temperatura do interior do fruto.
• Internal atmosphere concentrations.
* Concentrações da atmosfera interna.
○ External productions.
* Produções externas.
Fig. 5 — Effect of a low oxygen atmosphere (3% O₂, 97% N₂) on 'Conference' pears after transfer from —1°C to +20°C.

Efeito de uma atmosfera com baixo oxigênio (3% O₂, 97% N₂) em pêras 'Conference' depois da transferência de —1°C para +20°C.

- Pear in 3% O₂ on 11.3.71.
 Pêra em 3% O₂ em 11.3.71.
- Pear in air on 11.3.71.
 Pêra em ar em 11.3.71.
- Removed from low O₂ atmosphere to air.
 Passagem de atmosfera com 3% O₂ para ar.
- Pear in 3% O₂ on 26.4.71.
 Pêra em 3% O₂ em 26.4.71.
- Pear in air on 2.5.71.
 Pêra em ar em 2.5.71.
ethylene production and internal ethylene concentration follow a very similar pattern of change reaching a peak after 6 hours. The increase in CO₂ production follows the rise in temperature but the internal CO₂ concentration rises rapidly after the first 2 hours and then reaches a plateau. The changes in solubility of CO₂ with temperature may be important in relation to the lack of correspondence between the internal CO₂ concentrations and the CO₂ production of the fruit.

Fig. 5 shows that an atmosphere deficient in oxygen (3% O₂, 97% N₂) suppressed the increased ethylene production during the temperature transition but the increase in CO₂ production was stimulated. When fruit, retarded in a low O₂ atmosphere during the temperature transition, was returned to air there was a large and rapid increase in ethylene production—a ten-fold increase in 30 minutes. It is interesting that in pears which had been stored longer, the increase in ethylene production was only partially retarded in the low O₂ atmosphere but the CO₂ production was stimulated in the usual way (Fig. 5). In the second experiment (Fig. 5, 26 April) the initial increase in ethylene production during the warming up period after 5 hours at 20° was higher than in the first one (Fig. 5, 11th March).

DISCUSSION AND CONCLUSIONS

The object of the work on the storage of 'Rocha' pears is to describe optimum conditions for the storage of this newly introduced variety which is being increasingly cultivated in Portugal. The present paper describes the initial study in this project and in it we describe changes in the CO₂ and ethylene production of the fruit during storage and «after ripening». We have found that during storage the rate of ethylene production rose to a maximum after 5 months storage at +1°C. (Fig. 1) by which time the presence of exogenously supplied ethylene had no effect on the respiration of the fruit at 20°C. (Fig. 2). Thus by the middle of January, the fruit had reached the post-climacteric stage at +1°C.

During the temperature transition from +1°C to +20°C we have shown that the increase in CO₂ production closely followed the increase in temperature of the flesh of the fruit
while the ethylene production rose to a peak after 5-6 hours before complete temperature equilibration was achieved and then fell. In several cases the rate of ethylene production continued to fall until 24 hours after transfer from the low temperature and then rose to a second peak after 24-48 hours. The changes in ethylene production were closely paralleled by changes in the internal concentration of the gas and thus changes in diffusion rate and solubility of the gas during the temperature transfer do not account for the increased ethylene emission by the fruit. The diffusion of gases from the internal atmosphere to the atmosphere follows Fick's law, i.e., the rate of diffusion of gas (equivalent to the rate of production) is proportional to the concentration difference between the interior and exterior of the fruit (Burg & Burg, 1965a). In the case of CO₂ there is no simple relationship between the internal concentrations and the rate of production during the early stages of the temperature shift and here solubility effects may be important.

It seems likely that the observed increase in ethylene production is related to the increased activity of an ethylene producing system which has developed at low temperature. The burst of production on increase in temperature is related to the developed biogenetic capacity and the availability of substrates and co-factors. The fall in activity between 5 and 10 hours is probably related to the exhaustion of the supply of either the substrates or of co-factors. Low O₂ atmospheres, which are known to inhibit the oxidative stages involved in ethylene production (Mapson, 1970), prevent the increase in ethylene production during the temperature transition while the increase in CO₂ production is somewhat stimulated. However, when temperature equilibration has been observed and the constraint of low O₂ has been removed, there is a dramatic increase in ethylene production.

Other workers (Hansen, 1941; Fidler & North, 1969) have found large and somewhat variable increases in ethylene production when pears are transferred from the cold to room temperature. Damage to tissue often results in increased ethylene production (see McGlasson, 1969) and Reid & Pratt (1972) suggested that ethylene may act as a «wound hormone». It may be that the sudden change in the flesh temperature of the
fruit creates a degree of stress in the tissue and this may itself tend to stimulate ethylene production.

We have studied these transitory changes in CO$_2$ and ethylene production during the temperature equilibration between +1° and +20° C. in the hope that these changes would reflect the metabolic condition of the fruit in the store and would perhaps provide a rapid method of assessing this metabolic state. We have indications that they may prove useful but more detailed studies on this aspect are under way and when complete the value of this method of evaluation can be assessed.

RESUMO

Estudo da produção de etileno e anidrido carbônico em pêras durante a conservação em ar a baixa temperatura e na subsequente transferência para +20° C.

Durante os períodos de armazenagem e de pós-maturação de pêras 'Rocha', variedade portuguesa largamente cultivada em Portugal, foram determinadas as produções de etileno e de anidrido carbônico. A produção de etileno atingiu um máximo aos cinco meses de armazenamento à temperatura de 1° C., mas na transferência para 20° C., depois de uma subida inicial, a velocidade de produção foi sempre decrescente. Foram feitas experiências com pêras 'Rocha' e 'Conference' para seguir as variações de produção de etileno e CO$_2$ durante as primeiras horas após a transferência para 20° C. A respiração aumentou paralelamente com o aumento da temperatura do fruto, mas a produção de etileno alcançou um máximo depois de 6-7 horas a 20° C. e depois baixou. Uma atmosfera deficiente em O$_2$ diminuiu a produção de etileno, durante o período de aquecimento, mas a respiração foi estimulada.

ACKNOWLEDGMENTS

This work was undertaken by M. A. Torres from Estação Agronómica Nacional, Oeiras, Portugal at the ARC Food Research Institute, Norwich, England in collaboration with Dr. M. J. C. Rhodes.

Financial support was given by the British Council for the first six months and by OECD for the last two months.
REFERENCES

Burg, S. P. & Burg, E. A.

Fidler, J. C.

& Coursey, D. E.

& North, C. J.

Hansen, E.

Kidd, F. & West, C.

Knee, M.

Leonard, S., Luh, B. S., Hirnreiner, E. & Simone, M.

Mapson, L. W.

McGlasson, W. B.

Pratt, H. K. & Goeschl, J. D.

Reid, M. S. & Pratt, H. K.

Rhodes, M. J. C. & Hulme, A. C.
1972 In preparation.
Rhodes, M. J. C.

Torres, Maria A.
1971 *Studies on cold storage of Portuguese pears*. Report for OECD.

Wilkinson, B. G.